新版gre數(shù)學(xué)復(fù)習(xí)重要考點(diǎn):排列
俗話說:工欲善其事必先利其器。很多參加了新版gre考試的同學(xué)都覺得數(shù)學(xué)有點(diǎn)難度,相信這其中的原因還是由于考生在新版gre數(shù)學(xué)復(fù)習(xí)時(shí)沒有把基礎(chǔ)打牢。如果新版gre數(shù)學(xué)基本考點(diǎn)都沒有復(fù)習(xí)到,如何能拿到分?jǐn)?shù)呢?所以說,想要新版gre數(shù)學(xué)考好,復(fù)習(xí)的時(shí)候一定要把基本概念和重要考點(diǎn)都弄扎實(shí)。
今天針對(duì)新版gre數(shù)學(xué)復(fù)習(xí),小編給大家整理的是關(guān)于Combinations of Choices的相關(guān)內(nèi)容,這些概念在考試中一定會(huì)考到的。希望考生能再接再厲,取得一個(gè)好成績(jī),突破新版gre數(shù)學(xué)難的困境。
新版gre數(shù)學(xué)復(fù)習(xí)重要考點(diǎn):Permutation of Objects
The number of ways n distinct objects can be ordered is n!.
Example:
Number of ways 6 people can from a queue is 6!.
Number of ways 5 different cars can be parked in 5 parking spaces is 5!.
Remember:
This does not apply if there are identical objects or ordering does not matter.
新版gre數(shù)學(xué)復(fù)習(xí)重要考點(diǎn):Permutation with Selection
The number of ways n objects drawn from a collection of m distinct objects can be ordered is m!/!.
Example:
Number of ways a queue of length 3 can be formed from a group of 5 people is 5!/!=5!/2!=543=60.
Number of possible top ten list for 150 movies is 150!/!.
Remember:
This does not apply if there are identical objects or ordering does not matter.
俗話說:工欲善其事必先利其器。很多參加了新版gre考試的同學(xué)都覺得數(shù)學(xué)有點(diǎn)難度,相信這其中的原因還是由于考生在新版gre數(shù)學(xué)復(fù)習(xí)時(shí)沒有把基礎(chǔ)打牢。如果新版gre數(shù)學(xué)基本考點(diǎn)都沒有復(fù)習(xí)到,如何能拿到分?jǐn)?shù)呢?所以說,想要新版gre數(shù)學(xué)考好,復(fù)習(xí)的時(shí)候一定要把基本概念和重要考點(diǎn)都弄扎實(shí)。
今天針對(duì)新版gre數(shù)學(xué)復(fù)習(xí),小編給大家整理的是關(guān)于Combinations of Choices的相關(guān)內(nèi)容,這些概念在考試中一定會(huì)考到的。希望考生能再接再厲,取得一個(gè)好成績(jī),突破新版gre數(shù)學(xué)難的困境。
新版gre數(shù)學(xué)復(fù)習(xí)重要考點(diǎn):Permutation of Objects
The number of ways n distinct objects can be ordered is n!.
Example:
Number of ways 6 people can from a queue is 6!.
Number of ways 5 different cars can be parked in 5 parking spaces is 5!.
Remember:
This does not apply if there are identical objects or ordering does not matter.
新版gre數(shù)學(xué)復(fù)習(xí)重要考點(diǎn):Permutation with Selection
The number of ways n objects drawn from a collection of m distinct objects can be ordered is m!/!.
Example:
Number of ways a queue of length 3 can be formed from a group of 5 people is 5!/!=5!/2!=543=60.
Number of possible top ten list for 150 movies is 150!/!.
Remember:
This does not apply if there are identical objects or ordering does not matter.