雅思寫(xiě)作回憶及答案

雕龍文庫(kù) 分享 時(shí)間: 收藏本文

雅思寫(xiě)作回憶及答案

  Rogue theory of smell gets a boost   1. A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.   2. Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.   3. Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.   4. This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized.   5. Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   6. But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass)。   7. Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.   8. This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.   9. Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield.   10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it。 But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.   11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.   12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible.   13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed.   14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is.   (668 words Nature)   Questions 1-4   Do the following statements agree with the information given in the passage? Please write   TRUE if the statement agrees with the writer   FALSE if the statement does not agree with the writer   NOT GIVEN if there is no information about this in the passage   1. The result of the study at UCL agrees with Turins theory.   2. The study at UCL could conclusively prove what Luca Turin has hypothesized.   3. Turin left his post at UCL and started his own business because his theory was ignored.   4. The molecules of alcohols and those of thiols look alike.

  Questions 5-9   Complete the sentences below with words from the passage. Use NO MORE THAN THREE WORDS for each answer.   5. The hypothesis that we smell by sensing the molecular vibration was made by ______.   6. Turins company is based in ______.   7. Most scientists believed that our nose works in the same way as our ______.   8. Different isotopes can smell different when ______ weigh differently.   9. According to Audrew Horsfield, it is still to be proved that ______ could really occur in human nose.   Question 10-12   Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer.   10. Whats the name of the researcher who collaborated with Stoneham?   11. What is the next step of the UCL teams study?   12. What is the theoretical basis in designing odorants in Turins company?   Answer Keys and Explanations   1. T 見(jiàn)第一段。give sth the thumbs up為接受的意思。   2. F 見(jiàn)第三段。 Thats still some way from proving that the theory, proposed in the mid- 1990s by biophysicist Luca Turin, is correct.意即現(xiàn)在尚無(wú)法證實(shí)生物物理學(xué)家Luca在九十年代中期提出的理論是否正確。   3. NG   4. T 見(jiàn)第六段 Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs.identical 一詞是完全相同的意思。這句話(huà)是說(shuō)alcohols和thiols的分子結(jié)構(gòu)看起來(lái)一樣,但是它們的味道卻相去甚遠(yuǎn)。   5. Luca Turin 文章第二,三和七段均可看出Luca的理論即人類(lèi)的鼻子是通過(guò)感覺(jué)氣味分子的震動(dòng)來(lái)分辨氣味的。   6. Virginia 見(jiàn)第四段。   7. tongue 見(jiàn)第五段 This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   8. the atoms 見(jiàn)第八段 This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier.   9. vibration-assisted electron tunneling 見(jiàn)第九段 The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield. 句中的代詞this指句首的vibration-assisted electron tunneling。   10. Andrew Horsfield 見(jiàn)第九段結(jié)尾。   11.proper experimental verification 見(jiàn)第十三段。   12.their computed vibrations 見(jiàn)第十四段

  

  Rogue theory of smell gets a boost   1. A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.   2. Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.   3. Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.   4. This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized.   5. Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   6. But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass)。   7. Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.   8. This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.   9. Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield.   10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it。 But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.   11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.   12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible.   13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed.   14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is.   (668 words Nature)   Questions 1-4   Do the following statements agree with the information given in the passage? Please write   TRUE if the statement agrees with the writer   FALSE if the statement does not agree with the writer   NOT GIVEN if there is no information about this in the passage   1. The result of the study at UCL agrees with Turins theory.   2. The study at UCL could conclusively prove what Luca Turin has hypothesized.   3. Turin left his post at UCL and started his own business because his theory was ignored.   4. The molecules of alcohols and those of thiols look alike.

  Questions 5-9   Complete the sentences below with words from the passage. Use NO MORE THAN THREE WORDS for each answer.   5. The hypothesis that we smell by sensing the molecular vibration was made by ______.   6. Turins company is based in ______.   7. Most scientists believed that our nose works in the same way as our ______.   8. Different isotopes can smell different when ______ weigh differently.   9. According to Audrew Horsfield, it is still to be proved that ______ could really occur in human nose.   Question 10-12   Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer.   10. Whats the name of the researcher who collaborated with Stoneham?   11. What is the next step of the UCL teams study?   12. What is the theoretical basis in designing odorants in Turins company?   Answer Keys and Explanations   1. T 見(jiàn)第一段。give sth the thumbs up為接受的意思。   2. F 見(jiàn)第三段。 Thats still some way from proving that the theory, proposed in the mid- 1990s by biophysicist Luca Turin, is correct.意即現(xiàn)在尚無(wú)法證實(shí)生物物理學(xué)家Luca在九十年代中期提出的理論是否正確。   3. NG   4. T 見(jiàn)第六段 Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs.identical 一詞是完全相同的意思。這句話(huà)是說(shuō)alcohols和thiols的分子結(jié)構(gòu)看起來(lái)一樣,但是它們的味道卻相去甚遠(yuǎn)。   5. Luca Turin 文章第二,三和七段均可看出Luca的理論即人類(lèi)的鼻子是通過(guò)感覺(jué)氣味分子的震動(dòng)來(lái)分辨氣味的。   6. Virginia 見(jiàn)第四段。   7. tongue 見(jiàn)第五段 This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   8. the atoms 見(jiàn)第八段 This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier.   9. vibration-assisted electron tunneling 見(jiàn)第九段 The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield. 句中的代詞this指句首的vibration-assisted electron tunneling。   10. Andrew Horsfield 見(jiàn)第九段結(jié)尾。   11.proper experimental verification 見(jiàn)第十三段。   12.their computed vibrations 見(jiàn)第十四段

  

信息流廣告 競(jìng)價(jià)托管 招生通 周易 易經(jīng) 代理招生 二手車(chē) 網(wǎng)絡(luò)推廣 自學(xué)教程 招生代理 旅游攻略 非物質(zhì)文化遺產(chǎn) 河北信息網(wǎng) 石家莊人才網(wǎng) 買(mǎi)車(chē)咨詢(xún) 河北人才網(wǎng) 精雕圖 戲曲下載 河北生活網(wǎng) 好書(shū)推薦 工作計(jì)劃 游戲攻略 心理測(cè)試 石家莊網(wǎng)絡(luò)推廣 石家莊招聘 石家莊網(wǎng)絡(luò)營(yíng)銷(xiāo) 培訓(xùn)網(wǎng) 好做題 游戲攻略 考研真題 代理招生 心理咨詢(xún) 游戲攻略 興趣愛(ài)好 網(wǎng)絡(luò)知識(shí) 品牌營(yíng)銷(xiāo) 商標(biāo)交易 游戲攻略 短視頻代運(yùn)營(yíng) 秦皇島人才網(wǎng) PS修圖 寶寶起名 零基礎(chǔ)學(xué)習(xí)電腦 電商設(shè)計(jì) 職業(yè)培訓(xùn) 免費(fèi)發(fā)布信息 服裝服飾 律師咨詢(xún) 搜救犬 Chat GPT中文版 語(yǔ)料庫(kù) 范文網(wǎng) 工作總結(jié) 二手車(chē)估價(jià) 情侶網(wǎng)名 愛(ài)采購(gòu)代運(yùn)營(yíng) 情感文案 古詩(shī)詞 邯鄲人才網(wǎng) 鐵皮房 衡水人才網(wǎng) 石家莊點(diǎn)痣 微信運(yùn)營(yíng) 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 石家莊人才網(wǎng) 銅雕 關(guān)鍵詞優(yōu)化 圍棋 chatGPT 讀后感 玄機(jī)派 企業(yè)服務(wù) 法律咨詢(xún) chatGPT國(guó)內(nèi)版 chatGPT官網(wǎng) 勵(lì)志名言 兒童文學(xué) 河北代理記賬公司 教育培訓(xùn) 游戲推薦 抖音代運(yùn)營(yíng) 朋友圈文案 男士發(fā)型 培訓(xùn)招生 文玩 大可如意 保定人才網(wǎng) 黃金回收 承德人才網(wǎng) 石家莊人才網(wǎng) 模型機(jī) 高度酒 沐盛有禮 公司注冊(cè) 造紙術(shù) 唐山人才網(wǎng) 沐盛傳媒