最新余弦定理新教材說(shuō)課稿
范文為教學(xué)中作為模范的文章,也常常用來(lái)指寫(xiě)作的模板。常常用于文秘寫(xiě)作的參考,也可以作為演講材料編寫(xiě)前的參考。范文書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇范文呢?接下來(lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫(xiě),我們一起來(lái)看一看吧。
余弦定理新教材說(shuō)課稿篇一
《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問(wèn)題:
1)、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。
2)、已知三邊求三個(gè)內(nèi)角;
3)、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛(ài)國(guó)主題的二個(gè)任務(wù),通過(guò)任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過(guò)任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問(wèn)題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛(ài)國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛(ài)國(guó)主義精神。
在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。
1、任務(wù)驅(qū)動(dòng)法
教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛(ài)國(guó)主義精神。
2、引導(dǎo)發(fā)現(xiàn)法、觀察法
通過(guò)對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3、歸納總結(jié)法
學(xué)生通過(guò)前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4、講練結(jié)合法
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問(wèn)題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
(一)知識(shí)目標(biāo)
1、使學(xué)生掌握余弦定理及其證明。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
(二)能力目標(biāo)
1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問(wèn)題的`能力。
2、通過(guò)啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過(guò)對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。
(三)德育目標(biāo)
1、培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
小結(jié)歸納、布置作業(yè)。
(一)、導(dǎo)入
1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過(guò)完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。
2、通過(guò)與直角三角形勾股定理引出余弦定理(快樂(lè)起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)探索研究,合理猜想來(lái)發(fā)現(xiàn)余弦定理。
(二)、新課
1、證明猜想,導(dǎo)出余弦定理及余弦定理的變形
經(jīng)過(guò)嚴(yán)密邏輯推理證明得出余弦定理,這一過(guò)程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
2、解決二個(gè)任務(wù)
3、操作演練,鞏固提高。
4、小結(jié):
通過(guò)學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。
5、作業(yè):
分層布置作業(yè),根據(jù)不同層次學(xué)生將作業(yè)分為必做題和選做題。使不同程度的學(xué)生都有所提高。
板書(shū)是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書(shū)中,利于學(xué)生加深印象,理清思路。
在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
余弦定理新教材說(shuō)課稿篇二
1.地位及作用
"余弦定理"是人教a版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問(wèn)題的兩個(gè)重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問(wèn)題的其它數(shù)學(xué)問(wèn)題及生產(chǎn)、生活實(shí)際問(wèn)題的重要工具具有廣泛的應(yīng)用價(jià)值,起到承上啟下的作用。
2.教學(xué)重、難點(diǎn)
重點(diǎn):余弦定理的證明過(guò)程和定理的簡(jiǎn)單應(yīng)用。
難點(diǎn):利用向量的數(shù)量積證余弦定理的思路。
知識(shí)目標(biāo):能推導(dǎo)余弦定理及其推論,能運(yùn)用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。
能力目標(biāo):培養(yǎng)學(xué)生知識(shí)的遷移能力;歸納總結(jié)的能力;運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
情感目標(biāo):從實(shí)際問(wèn)題出發(fā)運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題這個(gè)過(guò)程體驗(yàn)數(shù)學(xué)在實(shí)際生活中的運(yùn)用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。通過(guò)主動(dòng)探索,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。
數(shù)學(xué)課堂上首先要重視知識(shí)的發(fā)生過(guò)程,既能展現(xiàn)知識(shí)的獲取,又能暴露解決問(wèn)題的思維。在本節(jié)教學(xué)中,我將遵循"提出問(wèn)題、分析問(wèn)題、解決問(wèn)題 "的.步驟逐步推進(jìn),以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生探究、歸納、推導(dǎo),引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),師生共同解決問(wèn)題,使學(xué)生在各種數(shù)學(xué)活動(dòng)中掌握各種數(shù)學(xué)基本技能,初步學(xué)會(huì)從數(shù)學(xué)角度去觀察事物和思考問(wèn)題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。
本節(jié)教學(xué)中通過(guò)創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷"現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題"的過(guò)程,發(fā)現(xiàn)新的知識(shí),把學(xué)生的潛意識(shí)狀態(tài)的好奇心變?yōu)樽杂X(jué)求知的創(chuàng)新意識(shí)。又通過(guò)實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。
幫助學(xué)生從平面幾何、三角函數(shù)、向量知識(shí)等方面進(jìn)行分析討論,選擇簡(jiǎn)潔的處理工具,引發(fā)學(xué)生的積極討論。你能夠有更好的具體的量化方法嗎?問(wèn)題可轉(zhuǎn)化為已知三角形兩邊長(zhǎng)和夾角求第三邊的問(wèn)題,即:在 中已知ac=b,ab=c和a,求a.
學(xué)生對(duì)向量知識(shí)可能遺忘,注意復(fù)習(xí);在利用數(shù)量積時(shí),角度可能出現(xiàn)錯(cuò)誤,出現(xiàn)不同的表示形式,讓學(xué)生從錯(cuò)誤中發(fā)現(xiàn)問(wèn)題,鞏固向量知識(shí),明確向量工具的作用。同時(shí),讓學(xué)生明確數(shù)學(xué)中的轉(zhuǎn)化思想:化未知為已知。將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,引導(dǎo)學(xué)生分析問(wèn)題。在 中已知a=5,b=7,c=8,求b.
學(xué)生思考或者討論,若有同學(xué)答則順勢(shì)引出推論,若不能作答則由老師引導(dǎo)推出推論,然后返回解決該問(wèn)題。
讓學(xué)生觀察推論的特征,討論該推論有什么用。
余弦定理新教材說(shuō)課稿篇三
大家好,今天我向大家說(shuō)課的題目是《余弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。
本節(jié)知識(shí)是職業(yè)高中數(shù)學(xué)教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學(xué)習(xí)的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,在實(shí)際測(cè)量問(wèn)題及航海問(wèn)題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)??家恍┙獯痤}。并且在探索建立余弦定理時(shí)還用到向量法,坐標(biāo)法等數(shù)學(xué)方法,同時(shí)還用到了數(shù)形結(jié)合,方程等數(shù)學(xué)思想。因此,余弦定理的知識(shí)非常重要。特別是在三角形中的求角問(wèn)題中作用更大。做為職業(yè)高中的學(xué)生必須學(xué)好學(xué)透這節(jié)知識(shí)
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
①理解掌握余弦定理,能正確使用定理
②培養(yǎng)學(xué)生教形結(jié)合分析問(wèn)題的能力
③培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)耐评硭季S和良好的審美能力。
教學(xué)重點(diǎn):定理的探究及應(yīng)用
教學(xué)難點(diǎn):定理的探究及理解
對(duì)于職業(yè)高中的高一學(xué)生,雖然知識(shí)經(jīng)驗(yàn)并不豐富,但他們的智利發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效地突出重點(diǎn),突破難點(diǎn),以學(xué)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,讓學(xué)生的思維由問(wèn)題開(kāi)始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)?提示和指導(dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線,聯(lián)系方法與技能使學(xué)生較易證明余弦定理,另外通過(guò)例題和練習(xí)來(lái)突破難點(diǎn),注重知識(shí)的形成過(guò)程,突出教學(xué)理念的創(chuàng)新。
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實(shí)踐探究,形成定理,大約用25分鐘
第三:應(yīng)用定理,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點(diǎn),說(shuō)明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。
(二)邏輯推理,證明猜想
提出問(wèn)題,探究問(wèn)題,形成定理,回顧分析,形成結(jié)論,再認(rèn)識(shí)結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對(duì)比特殊,認(rèn)知推廣。落實(shí)定理,構(gòu)建定理應(yīng)用體系。
(三)歸納總結(jié),簡(jiǎn)單應(yīng)用
1、讓學(xué)生用文字?jǐn)⑹鲇嘞叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2、回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務(wù)。
3、確定使用公式。
4、科學(xué)求解過(guò)程。
(五)課堂練習(xí),提高鞏固
1、在△abc中,已知下列條件,解三角形
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2、在△abc中,已知下列條件,解三角形
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。
(六)小結(jié)反思,提高認(rèn)識(shí)
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1、用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2、兩種表達(dá)。
3、兩類問(wèn)題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。
余弦定理新教材說(shuō)課稿篇四
《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問(wèn)題:
1、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。
2、已知三邊求三個(gè)內(nèi)角;
3、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛(ài)國(guó)主題的二個(gè)任務(wù),通過(guò)任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過(guò)任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問(wèn)題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛(ài)國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的`激發(fā)了愛(ài)國(guó)主義精神。
在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。
1、任務(wù)驅(qū)動(dòng)法
教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛(ài)國(guó)主義精神。
2、引導(dǎo)發(fā)現(xiàn)法、觀察法
通過(guò)對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3、歸納總結(jié)法
學(xué)生通過(guò)前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4、講練結(jié)合法
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問(wèn)題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
(一)知識(shí)目標(biāo)
1、使學(xué)生掌握余弦定理及其證明。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
(二)能力目標(biāo)
1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問(wèn)題的能力。
2、通過(guò)啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過(guò)對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。
(三)德育目標(biāo)
1、培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
。
(一)導(dǎo)入
1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過(guò)完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。
2、通過(guò)與直角三角形勾股定理引出余弦定理(快樂(lè)起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)探索研究,合理猜想來(lái)發(fā)現(xiàn)余弦定理。
(二)新課
3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形
經(jīng)過(guò)嚴(yán)密邏輯推理證明得出余弦定理,這一過(guò)程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4、解決二個(gè)任務(wù)
5、操作演練,鞏固提高。
6、小結(jié):
通過(guò)學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。
7、作業(yè):
分層布置作業(yè),根據(jù)不同層次學(xué)生將作業(yè)分為必做題和選做題。使不同程度的學(xué)生都有所提高
板書(shū)是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書(shū)中,利于學(xué)生加深印象,理清思路。
在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
余弦定理新教材說(shuō)課稿篇五
大家好,今天我向大家說(shuō)課的題目是《余弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。
本節(jié)知識(shí)是職業(yè)高中數(shù)學(xué)教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學(xué)習(xí)的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,在實(shí)際測(cè)量問(wèn)題及航海問(wèn)題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。并且在探索建立余弦定理時(shí)還用到向量法,坐標(biāo)法等數(shù)學(xué)方法,同時(shí)還用到了數(shù)形結(jié)合,方程等數(shù)學(xué)思想。因此,余弦定理的知識(shí)非常重要。特別是在三角形中的求角問(wèn)題中作用更大。做為職業(yè)高中的學(xué)生必須學(xué)好學(xué)透這節(jié)知識(shí)。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
①理解掌握余弦定理,能正確使用定理。
②培養(yǎng)學(xué)生教形結(jié)合分析問(wèn)題的能力。
③培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)耐评硭季S和良好的審美能力。
教學(xué)重點(diǎn):定理的探究及應(yīng)用。
教學(xué)難點(diǎn):定理的。探究及理解。
對(duì)于職業(yè)高中的高一學(xué)生,雖然知識(shí)經(jīng)驗(yàn)并不豐富,但他們的智利發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效地突出重點(diǎn),突破難點(diǎn),以學(xué)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,讓學(xué)生的思維由問(wèn)題開(kāi)始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線,聯(lián)系方法與技能使學(xué)生較易證明余弦定理,另外通過(guò)例題和練習(xí)來(lái)突破難點(diǎn),注重知識(shí)的形成過(guò)程,突出教學(xué)理念的創(chuàng)新。
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的'探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
第一:創(chuàng)設(shè)情景,大概用2分鐘。
第二:實(shí)踐探究,形成定理,大約用25分鐘。
第三:應(yīng)用定理,拓展反思,大約用13分鐘。
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點(diǎn),說(shuō)明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。
(二)邏輯推理,證明猜想
提出問(wèn)題,探究問(wèn)題,形成定理,回顧分析,形成結(jié)論,再認(rèn)識(shí)結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對(duì)比特殊,認(rèn)知推廣。落實(shí)定理,構(gòu)建定理應(yīng)用體系。
(三)歸納總結(jié),簡(jiǎn)單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹鲇嘞叶ɡ?,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2.回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務(wù)。
3、確定使用公式。
4、科學(xué)求解過(guò)程。
(五)課堂練習(xí),提高鞏固
1。在△abc中,已知下列條件,解三角形。
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2。在△abc中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。
(六)小結(jié)反思,提高認(rèn)識(shí)
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1.用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.兩種表達(dá)。
3.兩類問(wèn)題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。